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Abstract-The plane strain problem of a multi-layered composite with parallel cracks is con­
sidered. The main objective of this paper is to study the interaction between parallel and
collinear cracks. The problem is formulated in terms of a set of simultaneous singular integral
equations which are solved numerically. The effect of material properties on the interaction
between cracks is also demonstrated.

INTRODUCTION

Welded and bonded structures have been observed to contain multiple cracks. The study of
the interaction between such cracks has also been ofconsiderable interest to reactor designers.
The problem of a multi-layered composite containing a single crack was studied by Erdogan
and Gupta[1, 2]. The interaction between multiple cracks in an isotropic medium and
collinear cracks in a layered composite has been considered by Ratwani[3, 4].

In the present study, the analytical methods of [1-4] have been extended to treat the layered
composite containing parallel and collinear cracks. In particular, the plane strain problem
of an elastic layer bonded to two dissimilar half-planes is considered. The layer medium
contains one or two symmetrically placed collinear flaws and one of the half-planes is
assumed to have a single parallel flaw. The procedure, of course, can easily treat any com­
posite containing n elastic layers and cracks located along m parallel planes. For the sake of
simplicity, only the symmetric problem is studied here. The anti-symmetric loading case
can be handled in an analogous manner.

Stress intensity factors at all the crack tips are computed. Their variation with respect to
the crack locations, geometry and material of the composite are presented graphically.

FORMULATION OF THE PROBLEM

Consider the plane problem, shown in Fig. I, containing one or two collinear cracks in
each plane. The cracks are assumed to be located symmetrically with respect to the y-axis.
In this paper, our primary interest is in the disturbed stress state caused by the cracks.
Hence, assuming that the overall stress distribution au0 in the imperfection-free medium is
known, the stress state aijT in the cracked medium may be expressed as
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where (1 ij is the disturbed stress state obtained by subjecting the crack surfaces to the follow­
ing tractions.

(1y/(X, h) = -(1yyo(x, h) = pix)

(1x/(x, h) = -(1XYo(x, h) = PI(X), C < Ixi < D,

(1y/(X, -hI) = -(1yyO(x, -hI) = Q2(X)

(1x/(X' -hI) = -(1XYo(x, -hI) = qI(X) A < Ixi < B.

(2)

Pi(X) and qi(X) satisfy a HOlder condition in their respective ranges.
The integral transform technique, described in detail for a single crack[l] and for mul­

tiple cracks[3], is used here to formulate the problem in terms of four unknown functions
defined by

(C< Ixi <D, y=h),

(3)

(A < Ix I < B, y = - hI)'

where: ui(x, y) and vlx, y) are the displacement fields in the respective regions shown in
Fig. 1.

Note that the crack surfaces are the singular surfaces across which the displacement vector
suffers a discontinuity and the unknown functions define the derivatives of the crack opening
displacements. For the sake of simplicity, the central plane of the elastic layer is assumed to
have the cracks. The case when the crack lies at the interface between the bielastic media
has been treated in detail in [2].
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Fig. 1. Geometry of the layered composite with collinear and parallel cracks.
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Following the procedure of [1] and [3], a set of simultaneous singular integral equations
of the first kind is derived, expressed as follows:

f 2 [ 0·· 1 f 2 1 + K 1'fJit) _'J_ + Kij(x, t) dt + I gk(r)Hik(x, 17) dr = -- npi(X)'
L,j=l t-x Lzk=l 2Pl

c < Ixl < D, i = 1,2,

2 2 [ O'k ] I + 1(2f Ifit)Lij(x, t) dt + f I gk(r) __I - + Miix, r) dr = -- nqi(X),
L,j=l Lzk=l r-x 2P2

A< Ixl <B, i=1,2, (4)

where L1 == (C < Ixl < D) and L 2 (A < Ixi < B), and Kj = 3 - 4Vi for plane strain and
K i (3 - vi)!(1 + v;) for generalized plane stress. Pi and Vi are the shear modulii and the
Poisson's ratios, for i = 1,2, denoting the elastic layer by the subscript 1 and the half-planes
by 2. The functions Kij' Lij , Hik and M ik are Fredholm kernels and are bounded in their
respective closed intervals. The expressions for these Fredholm kernels are given as follows:

f'" SI (a) - 4ah .
Kl1 (x, t) = () e- 2

•
h sm a(t - x) da

o D 1 a

(5)

1 foo [ (AI - ..1.2 )
Mu(X, 17) = - 2 0 A3 + s8(a) + D

1
(a)Dz{a) {A3 s7(a)

+ [s7(a)s8(a) - 8ah(1 ..;.. 2ah1)]e- 4 •
h
}] e- 2ah, sin a(r - x) da

1l oo [ (AI - )'2)
Mdx, r) = - '2 0 A3 - s6(a) + D

1
(a)Dz{a) {A3 s7(a)

+ [l6a2hh1 - S6(a)S7(a)]e- 4ah
}] e- ah

, cos a(r x) da
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1foo l· (AI - A2)
M 22(X, r) = - 2 0 A3 + S9(0:) + D

1
(0:)Dio:) {A3 S7(0:)

- [S7(0:)S9(0:) - 80:h(1 + 20:h1)] e-4~h}]e-2~hl sin o:(r - x)do:

where

and

D1(0:) = - A2 + (40:h + Ale-2M)e-2~h

Dio:) = A2 + (40:h - Ale-2~h)e-2~h

SI(O:) = 1 + A1A2 + 40:2h2 - 2Ale-2~h

S2(0:) = -A2 + (1 + 20:h)e-2~h

S3(0:) = 1 - 20:h - Ale-2~h

S4(0:) = A2 - (1 - 20:h)e - 2~h

ss(O:) = -1 - 20:h + Ale-2~h

S6(0:) = (1 - 40:2h/)/A3
S7(0:) = -A2 + Ale-4~h

ss(O:) = (1 - 20:h 1)2/A3

S9(0:) = (1 + 20:h1 )2/A3

(6)

(7)
1 _ 111 + 112 K1

.11.2 -
111 - 112

1 _ 112 + 111 K2
.11.3 -

112 - 111

The unknown functionsfi and gi in equations (4) have integrable singularities at the end
points. Therefore, the equations (4) must be solved subject to the singlevaluedness conditions

D Bf Nt) dt = 0 = f g/t) dt,
C A

i = 1,2. (8)

The singular integral equations (4) are solved simultaneously by using the numerical
technique described in [5]. It may be noted that if one of the cracks lies on the interface, the
corresponding integral equation would become that of second kind. The numerical tech­
nique to treat such equations is described in [6] and is used to solve the interface crack
problems in [2]. The stress intensity factors K[ and K u at all the crack tips are defined as in
[1]. As an example, for the crack in medium (1) near the crack tip x ~ D, these can be
expressed as

K\ = lim J2(x - D)(Jy/(x, h)
x-D

KIn = lim J2(x - D)(Jx/(x, h).
x-D

(9)
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(11)

The stress intensity factors can also be expressed in terms of the unknown functions fj(x).
The functions};(x), which have integrable singularities, may be written as

/;(x) = Gj(x) (10)
J(D - x)(x - C)

Equations (9) can now be written as

K\ = -~ lim J2(D - x)fix)
1 + Kl x-+D

21lt J 2= - -- -- G2(D)
1 + Kl D - C

K l
n =~ lim J2(D - X)fl(X)

1 + Kl x-+D

=~J 2 Gl(D).
1 + K l D - C

Superscripts 1 and 2 on the stress intensity factors refer to the cracks in medium 1 and 2
respectively.

DISCUSSION OF RESULTS

To demonstrate the interaction between parallel and collinear cracks, a layered composite
as shown in Fig. 1 is assumed to contain parallel cracks, one in the mid-plane of the elastic
layer and the other in one of the half planes. A realistic loading condition is that of uniform
loads acting far away from the cracks. The problem is usually divided in two parts. First the
unflawed layered composite is solved for the actual loading. Normal and shear stress com­
ponents at the crack locations are computed from this global solution. The second part of
the problem is to solve the disturbance problem with the tractions acting on the crack sur­
faces equal to negative of that obtained in the first (global) solutions. A superposition of the
two solutions provides the results for the original problem.

However, the main problem of interest in this paper is the disturbance problem. Two
numerical examples are presented. In all cases, an epoxy layer with elastic properties
III = 4·5 X 105 psi, Vl = 0·35 is sandwiched between two aluminum half planes: 112 = 107 psi
and V2 = 0·3. In the first example, the layered composite is assumed to contain only two
parallel cracks. The input tractions were assumed to be uniform uniaxial stresses with zero
shear component, i.e. in equation (2)

Pl(X) = qt(x) = 0

P2(X) = -(J or (12)

q2(X) = -(J.

Relatively less common, however, equation (12) represents the pressurized crack situation.
In a particular problem, one may have arbitrary input tractions with appropriate symmetry
conditions. The effect of the distance between the two parallel cracks on the four stress
intensity factors (at each crack tip) is presented in Table 1. When the crack in medium 1
is loaded (P2(X) = - (J), as expected, we get negative stress intensity factors for crack 2.
Similar effect is observed at crack 1, when the crack in medium 2 is loaded (q2(X) = -(J).
It is clear that the results need to be superimposed ifboth the cracks are loaded simultaneously.
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Table I. Stress intensity factors vs h,la for h/z = 1'0, 2'0; PI(X) = q,(X) = 0'0; Material 1 = Epoxy
(!LI = 4·5 x lOs psi, V, = 0·35); Material 2 = Aluminum (!L2 = 107 psi, V2 = 0'30); Ko = aV;ia

(parallel crack configuration)

h/a = 1·0
P2(X) = - a, q2(X) = 0 P2(X) = 0, q2(X) a

h,/a
K'dKo K'II/Ko K2,/Ko K2

11/Ko K'dKo K'II/Ko K 2,/Ko K 2
11/Ko

0·2 0·695 0'080 -1,990 -1'033 -0'182 -0'160 3·243 1·251
0'5 0·608 0'020 -1,132 -0,460 -0'064 -0'032 2-102 0'525
1·0 0·580 0'001 -0,620 -0'184 -0,030 -0,011 1-450 0'163
2'0 0'576 0·000 -0,305 -0'078 -0,009 -0'001 1·149 0'031
00 0·582 0·0 0·0 0·0 0·0 0'0 1·0 0·0

h/a = 2·0
0·2 0·817 0'027 -1'030 -0'494 -0,108 -0,040 2'738 0-978
0·5 0·785 0·008 -0'677 -0'251 -0,042 -0,015 1·997 0-473
1·0 0·770 0·000 -0-393 -0'102 --0'020 -0,008 1·430 0·157
2·0 0.770 0·000 -0'220 -0,053 -0,009 -0,000 1·146 0·031
00 0·775 0·0 0'0 0'0 0-0 0·0 1·0 0·0

We observe that the absolute magnitudes of all the K values increase as crack 2 nears the
interface. Table I also shows an effect of the layered thickness on the results. Notice the
decrease in the interaction between the two cracks since they are farther apart now. This
effect is explicitly shown in Fig. 2, where crack 1 is loaded only. The stress intensity factors
at crack 1 due to this loading increase with increasing layer thickness. In limit when h ~ 00,

K\ = 1·0 and K\) = K 2
) = K 2 n = 0, which is the well known result for a homogeneous

material containing a crack. A reverse effect is observed at the stress intensity factors at
crack 2 due to the loading at crack 2 itself, as shown in Fig. 3. K 2

) and K 2
" decrease as the

layer thickness is increased and, in the limiting case when h ~ 00, these approach asympo­
totically to the values obtained for the problem of a bimaterial medium containing a single
crack in one of the halfplanes. Interaction terms, of course, vanish as h ~ 00.
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Fig. 2. Stress intensity factors vs the layer thickness h/a for h,/a = 1'0; P2(X) = "- a, and
p,(x) = q,(x) = q2(X) = 0; configuration: parallel cracks.
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Fig. 3. The case with q2(X) = -cr and Pl(X) = P2(X) = Q,(X) = 0; configuration: same as for
Fig. 2.

As a second example, the case of the elastic layer containing two collinear cracks at the
mid-plane and located symmetrically is considered. Since the problem is symmetrical, stress
intensity factors at only one of the collinear cracks need be computed. In all numerical
cases, the location of crack 2 and the layer thickness have been kept fixed. Again, either the
collinear cracks or crack 2 is loaded at a time. Variation of the mode I stress intensity factor
with respect to the distance between the collinear cracks is shown in Fig. 4. When these
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Fig. 4. Stress intensity factor K, vs the distance between the collinear cracks (a/c); P2(X) = -cr,
and Pl(X) = Ql(X) = Q2(X) = 0; h/a = 2,0, hIla = 1·0.
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collinear cracks are far away, only a little interaction between the parallel crack is observed.
Another interesting phenomenon observed is that, if the two collinear cracks are close by,
i.e. cia > 1'25, the outer crack tips would become unstable before the inner crack tip. When
crack 2 is loaded, the stress intensity factors K 2

1 and K 2
II (at the tips of crack 2) remain

practically unaffected due to the displacement of the collinear crack locations. However, the
interaction between the cracks is quite strongly affected by the distance between the two
collinear cracks, as shown in Table 2. As the two cracks come closer, IK1I at both crack tips
increases monotonically, with a faster rise at the inner tip. IKIll at the inner tip, on the other
hand, undergoes a maximum value and steadily decreases to a very low value.

Table 2. Stress intensity factors at the collinear crack tips
vs the distance between them (a/c): q2(X) = - G, P2(X) =

PI(x)=ql(x)=O'O; Configuration: insert in Fig. 4

Crack tip C Crack tip D

Klc, KIC KiD, KID
a/e

II II

GV7Ta GV;~ - aV7Ta aV7Ta

0'00 0·00·0 0·0 0'0 0·0
0·20 0·0022 0·0036 0·0004 0·0015
0·35 0·0056 0·0076 0·0018 0·0040
0'50 0·0110 0·0088 0·0048 0·0066
0·65 0·0162 0·0076 0·0072 0·0079
0·80 0·0205 0·0050 0·0092 0·0082
0·95 0·0248 0·0023 0·0106 0·0082

In conclusion, whenever there is a structure containing multiple cracks, an analysis of the
type described in this paper can be utilized in order to find the critical configurations under
which the structure may be most vulnerable. The result, in short, shows that cracks situated
at various locations in a structure do interact with each other and this interaction becomes
very important when they are rather closely spaced. In such cases, the strength predictions
would be much more adequate and safe if these interactions have been taken into account.
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A6cTpaKT-PacCMaTpliBaeTcli np06JIeMa nJIOCIWH ,n;eq.opMaulili MHOrOCJIOHHoro COCTaBHoro
BemeCTBa C rrapaJIJIeJIbHbIMIi TpemliHaMH. rJIaBHOH ueJIbIO :nOH pa60TbI lIBJIlieTCR 1i3Y'!eHHe
B3aHMo,n;eHcTBHR MelK,Lly rrapaJIJIeJIbHbIMH H KOJIJIHHeapHbIMH TpeIUHHaMH. IIpo6JIeMa
q.0PMYJIlipyeTcli B TepMHHax pll,n;a COBMeCTHblX CliHfyJIRpHbIX liHTerpaJIbHbIX ypaBHeHliH,
KOTopble pa3pelliaJOTCR 'lliCJIeHHO. TaIOKe ,n;eMOHcTplipyeTcli 34J4JeKT CBoACTB MarepHana Ha
B3aliMo,n;eHcTBlie MelK,Lly TpeIUIiHaMIi.


